SEORANGPENGGUNA TELAH BERTANYA πŸ‘‡ Coba buktikan apakah persamaan Garis lurus berikut saling tegak lurus. 1. 2y=2x+6 dengan y=-x+6 INI JAWABAN TERBAIK πŸ‘‡ Jawaban yang benar diberikan: Kenkaikeren 2y = 2x - 3y = (2x - 3)/2y = x - 3/2m1 = 1 y = -x + 3m2 = -1 syarat tegak lurus:m1 Γ— m2 []
PembahasanMisalkan diketahui sebuah garis g memiliki persamaan , maka kemiringan garis g adalah dan diketahui sebuah garis h memiliki persamaan , maka kemiringan garis h adalah karena , dapat disimpulkan bahwa garis g tidak saling tegak lurus dengan garis h .Misalkan diketahui sebuah garis g memiliki persamaan , maka kemiringan garis g adalah dan diketahui sebuah garis h memiliki persamaan , maka kemiringan garis h adalah karena , dapat disimpulkan bahwa garis g tidak saling tegak lurus dengan garis h.
Cobabuktikan apakah persamaan lurus berikut saling tegak garis lurus. (4x + 6)/3 = 4y dengan 3x + 4y + 2 = 0. Gradien (Kemiringan) Persamaan Dan Pertidaksamaan Linear Satu Variabel Wajib; Persamaan Garis Lurus; Sistem Persamaan Linear Dua Variabel (Spldv) 7. SMP
MHMahasiswa/Alumni Institut Teknologi Sepuluh Nopember Surabaya29 Desember 2021 0851Halo Roy, jawaban untuk soal di atas adalah kedua garis tersebut saling tegak lurus Konsep Jika gradien garis g adalah mg dan gradien garis h adalah mh maka agar garis g dan h tegak lurus harus memenuhi syarat mg x mh = - 1 Jika diketahui persamaan garis lurus y = mx+c maka gradiennya adalah m Misal garis g Òž‘️ 3y = 3xÒˆ’1 garis h Òž‘️ y = Òˆ’x+2 garis g 3y = 3x-1 Òž‘️ kedua ruas dibagi 3 y = x-Γ’β€¦β€œ y = 1x-Γ’β€¦β€œ mg = 1 garis h y = -x+2 y = -1x+2 mh = -1 Tegak lurus Òž‘️ mg x mh = -1 mg x mh = 1 x -1 mg x mh = -1 Jadi, persamaan garis lurus 3y = 3xÒˆ’1 dengan y = Òˆ’x+2 saling tegak lurus Semoga membantu yaYah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!
Cobabuktikan apakah persamaan garis lurus berikut saling tegak lurus a. 2y=2x-3 dengan y=-x+3 b. 3x+y=7 dengan 3y-6y=7 c. 4x+6/3=4y dengan 3x+4y+2=0 Jawaban Dalam dunia konstruksi, posisi bangunan menjadi hal utama yang harus diperhatikan. Bahkan, tingkat kemiringan bangunan tidak bisa diabaikan karena bisa berpengaruh pada kekokohannya. Nah, membahas masalah kemiringan tentu tidak akan lepas dari persamaan garis lurus. Ingin tahu selengkapnya? Check this out! Pengertian Persamaan Garis Lurus Persamaan garis lurus adalah persamaan yang memuat satu atau lebih variabel, di mana masing-masing variabelnya berpangkat satu. Jika persamaan tersebut dilukiskan dalam diagram Cartesius, akan terbentuk grafik garis lurus dengan kemiringan tertentu. Kemiringan itu biasa disebut gradien garis m. Bentuk Persamaan Garis Secara umum, persamaan garis lurus memiliki dua bentuk yaitu sebagai berikut. 1. Bentuk eksplisit Bentuk eksplisit adalah bentuk persamaan garis yang memenuhi y = mx + c, dengan m = gradien garis dan c = konstanta. Adapun contoh bentuk eksplisit adalah y = 3x + 6. Berdasarkan persamaan tersebut, gradien garisnya = 3. 2. Bentuk implisit Bentuk implisit adalah bentuk persamaan garis yang memenuhi Ax + By + c = 0. Adapun contoh bentuk implisit adalah 3x – y + 6 = 0. Jika digambarkan dalam diagram Cartesius, grafik persamaan garis lurus y = 3x + 6 atau 3x – y + 6 = 0 adalah sebagai berikut. Cara Mencari Gradien Sebelum mencari persamaan garis, Quipperian harus tahu dulu cara menentukan gradien garisnya. Inilah beberapa cara untuk menentukan gradien garis. 1. Gradien garis yang melalui dua titik Jika sebuah garis lurus melalui dua titik koordinat Ax1,y1 dan Bx2,y2, maka gradiennya merupakan hasil bagi antara selisih nilai ordinat dan absisnya. Secara matematis, dirumuskan sebagai berikut. Perhatikan contoh berikut. Tentukan gradien garis yang melalui titik A-3,2 dan B-2,5! Pembahasan Tentukan dahulu nilai x1,y1 dan x2,y2nya. x1 = -3 y1 = 2 x2 = -2 y2 = 5 Untuk menentukan gradien garisnya, gunakan persamaan berikut. Jadi, gradien garisnya adalah 3. 2. Gradien tegak lurus Jika dua garis saling tegak lurus, maka hasil kali gradien kedua garis tersebut sama dengan -1. Mari kita buktikan! Gradien garis k Gradien garis h Hubungan antara gradien garis k dan garis h adalah Dengan demikian, terbukti bahwa hasil kali gradien kedua garis tersebut adalah -1. Secara matematis, rumus gradien tegak lurus dirumuskan sebagai berikut. Dengan m1 = gradien garis ke-1; dan m2 = gradien garis ke-2. 3. Gradien garis yang saling sejajar Jika dua garis sama-sama sejajar, maka gradien kedua garis tersebut sama. Mari kita buktikan! Gradien garis p Gradien garis q Berdasarkan perhitungan, terbukti bahwa gradien garis p dan q adalah sama. Secara matematis, rumus gradien garis yang saling sejajar adalah sebagai berikut. Cara Mencari Persamaan Garis Setelah sebelumnya Quipperian belajar bagaimana cara menentukan gradien garis, kini saatnya belajar bagaimana sih cara mencari persamaan garis itu. Ada beberapa cara untuk mencarinya, yaitu sebagai berikut. 1. Persamaan garis lurus melalui titik x1,y1 dan bergradien m Jika sebuah garis yang bergradien m melalui titik x1,y1, rumus persamaan garis lurusnya adalah sebagai berikut. Perhatikan contoh berikut. Tentukan persamaan garis lurus yang melalui titik 6,-2 dan bergradien 2. Pembahasan Adapun nilai x1 = 6 dan y1 = -2, m = 2. Dengan demikian, persamaan garis lurusnya adalah sebagai berikut. Jadi, persamaan garisnya adalah y = 2x – 10. 2. Persamaan garis lurus melalui 2 titik, yaitu Ax1,y1 dan Bx2,y2 Jika sebuah garis lurus melalui 2 titik Ax1,y1 dan Bx2,y2, maka persamaan garisnya ditentukan dengan rumus berikut. Perhatikan contoh berikut. Tentukan persamaan garis yang melalui titik P4,-2 dan Q-1,3! Pembahasan Untuk mencari persamaan garisnya, gunakan persamaan berikut. Jadi, persamaan garis lurus yang melalui titik P4,-2 dan Q-1,3 adalah x + y – 2 = 0. 3. Persamaan garis lurus saling sejajar Jika diketahui suatu garis sejajar dengan garis lain yang persamaannya diketahui, maka Quipperian harus mencari dahulu gradien garis yang diketahui persamaannya tersebut. Lalu, substitusikan nilai gradien tersebut ke persamaan berikut. Agar kamu lebih memahaminya, perhatikan contoh soal berikut. Garis A melalui titik 4,-1 dan sejajar dengan garis B yang persamaannya y = 2x + 5. Tentukan persamaan garis A! Pembahasan Pertama, tentukan gradien garis B Jadi, persamaan garis A adalah y = 2x – 9. 4. Persamaan garis lurus yang saling tegak lurus Pada prinsipnya, caranya sama dengan dua garis yang saling sejajar, yaitu dengan mencari gradien salah satu garisnya. Lalu, lakukan perkalian hingga menghasilkan nilai -1. Perhatikan contoh berikut. Pembahasan Pertama, tentukan gradien garis Q. Jadi, persamaan garis P adalah y = -2x. Bagaimana Quipperian, apakah sudah paham dengan materi kali ini? Untuk mengasah pemahamanmu, perhatikan contoh soal berikut ini. Contoh Soal 1 Gambarkan grafik garis lurus yang memiliki persamaan 4x – 2y + 8 = 0. Pembahasan Pertama, Quipperian harus melakukan analisis titik koordinat mana saja yang dilalui garis tersebut. Asumsikan saat x = 0 dan y = 0. Jika x = 0, maka y = 4, sehingga titik koordinatnya 0,4 Jika y = 0, maka x = -2, sehingga titik koordinatnya -2,0 Gambar garis lurusnya. Contoh Soal 2 Sebuah fungsi permintaan memiliki persamaan P = -3Q + 15. Tentukan banyaknya permintaan tertinggi beserta gambar grafiknya. Pembahasan Permintaan tertinggi dipenuhi jika P = 0. Artinya, Quipperian harus mencari nilai Q saat P = 0. P = -3Q + 15 ↔ 0 = -3Q + 15 ↔ 3Q = 15 ↔ Q = 5 Jadi, permintaan tertingginya adalah 5 unit. Gambar garis lurus Jika P = 0, maka Q = 5 Jika Q = 0, maka P = 15 Berikut ini gambar garisnya. Contoh Soal 3 Di bawah ini yang termasuk persamaan garis lurus adalah…. Pembahasan Kamu harus ingat bahwa persamaan garis lurus memuat variabel yang berpangkat 1. Dari ketiga persamaan pada soal, jelas bahwa persamaan yang termasuk persamaan garis lurus adalah x – 10y – 21 = 0. Itulah pembahasan Quipper Blog kali ini. Semoga bisa bermanfaat buat Quipperian. Jika kamu ingin mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Bersama Quipper Video, belajar jadi semakin mudah dan menyenangkan. Salam Quipper! Penulis Eka Viandari

Cobabuktikan apakah persamaan garis lurus berikut saling tegak lurus - 12976791 mutianashwakist mutianashwakist 31.10.2017 Matematika Sekolah Menengah Pertama terjawab β€’ terverifikasi oleh ahli Coba buktikan apakah persamaan garis lurus berikut saling tegak lurus 1 Lihat jawaban Coba lihat diagram di atas di negara USA atau Amerika

Persamaan garis lurus yang saling tegak lurus dapat diketahui dari hasil perkalian gradien dari kedua garis sama dengan –1. Atau, jika garis pertama memiliki gradien m1 dan garis kedua memiliki gradien m2 maka perkalian gradien kedua garis tersebut memenuhi persamaan m1 Γ— m2 = β€’1. Dapat juga dikatakan bahwa persamaan garis lurus yang saling tegak lurus memiliki nilai gradien dengan sifat berlawanan dan berkebalikan, Sebuah garis lurus yang berpotongan dengan sebuah garis lurus lainnya akan memiliki sebuah titik potong dengan besar sudut yang dibentuk tidak selalu tegak lurus. Dua buah garis dikatakan tegak lurus jika sudut yang dibentuk oleh perpotongan kedua garis sama dengan 90o siku-siku. Baca Juga Cara Menentukan Persamaan Garis Jika Diketahui Melalui Dua Titik Bagaimana cara mengetahui dua buah garis lurus yang saling tegak lurus? Bagaimana persamaan garis lurus yang saling tegak lurus? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Hubungan Gradien dari Dua Garis Saling Tegak Lurus Cara Cepat Menemukan Persamaan Garis Lurus yang Saling Tegak Lurus Contoh Soal dan Pembahasan Contoh 1 – Persamaan Garis Lurus yang Saling Tegak Lurus Contoh 2 – Persamaan Garis Saling Tegak Lurus Hubungan Gradien dari Dua Garis Saling Tegak Lurus Hal perlu diingat untuk menyatakan dua garis lurus yang saling tegak lurus adalah hasil kali gradien dari kedua garis sama dengan sama dengan –1. Dari karakteristik nilai gradien inilah, nantinya sobat idschool dapat menentukan persamaan garis yang tegak lurus dengan suatu garis lainnya. Misalkan terdapat dua buah garis dengan nilai gradien garis pertama adalah mg1 dan nilai gradien garis kedua sama dengan mg2. Hasil kali kedua gradien tersebut akan sama dengan – 1. Jika diketahui garis g2 melalui titik x1, y1 dan tegak lurus dengan garis g1 maka untuk mencari persamaan garis lurus yang saling tegak lurus dapat menggunakan persamaan berikut. Di mana nilai mg2 adalah nilai gradien dari gradies ke dua atau gradien garis yang akan dicari persamaan garisnya. Secara singkat, cara menemukan persamaan garis lurus yang saling tegak lurus sesuai dengan langkah-langkah berikut. Menentukan gradien garis pertama mg1 yaitu garis yang akan tegak lurus dengan garis yang akan dicari persamaannnya Menentukan gradien garis kedua mg1 yairu garis yang akan dicari persamaannyaGradien garis pertama adalah lawan kebalikan dari gradien garis kedua atau memenuhi persamaan mg1 Γ— mg2 = –1. Misalkan mg1 = 3 maka gradien garis kedua sama dengan mg2 = β€’1/3Perhatikan sebuah titik yang dilalui garis ke dua yaitu titik x1, y1Substitusi nilai gradien mg2 dan titik x1, y1 yang dilalui gari pada persamaan y – y1 = mx – x1Lakukan operasi aljabar biasa sehingga diperoleh persamaan garis lurus yang saling tegak lurus dengan suatu garis Bagian contoh soal dan pembahasan di akhir bagian akan menunjukkan bagaimana proses mendapatkan persamaan garis lurus yang saling tegak lurus seperti langkah-langkah di atas. Baca Juga Garis Istimewa pada Segitiga Selain cara seperti langkah-langkah yang telah diberikan di atas, ada juga sebuah cara cepat yang dapat digunakan untuk menentukan persamaan garis lurus yang saling tegak lurus. Cara cepat ini sebaiknya sobat idschool sudah menguasai bagaimana cara menentukan persamaan garis yang saling tegak lurus dengan cara langkah per langkah. Karena bagaimanapun juga, pemahaman konsep materi secara menyeluruh akan selalu lebih baik dari pada hanya paham cara yang instan. Lalu bagaimana cara cepat menentukan persamaan garis lurus yang saling tegak lurus dengan garis lain? Perhatikan caranya melalui penjelasan berikut. Kesimpulannyai Persamaan garis ax + by + c = 0 akan tegak lurus dengan garis bx – ay = b Γ— x1– a Γ— y1ii Persamaan garis ax – by + c = 0 akan tegak lurus dengan garis bx + ay = b Γ— x1+ a Γ— y1Di mana, x1 dan y1 berturut-turut adalah titik absis dan ordinat yang diketahui dilalui oleh garis tersebut. Baca Juga Cara Menentukan Persamaan Garis Lurus yang Saling Sejajar Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Persamaan Garis Lurus yang Saling Tegak Lurus Persamaan garis yang melalui titik 4, 2 dan tegak lurus dengan garis 2x – y + 5 = 0 adalah ….A. x + 2y + 6 = 0B. x – 2y – 8 = 0C. 2x – y – 6 = 0D. x + 2y – 8 = 0 PembahasanPertama, akan dikerjakan dengan cara step by step, kemudian akan dibandingkan hasilnya dengan cara cepat. Cara Step by Step1 Menentukan gradien dari garis 2x – y + 5 = 0 Karena yang akan dicari adalah garis yang tegak lurus dengan garis 2x – y + 5 = 0 maka nilai gradien garis yang akan dicari adalah lawan kebalikan dari gradien garis tersebut, yaitu m = β€’1/2 2 Menentukan gradien garis keduaPerhatikan cara mendapatkan nilai gradien garis kedua yang saling tegak lurus dengan garis 2x – y + 5 seperti Γ— m2 = β€’12 Γ— m2 = β€’1m2 = β€’1/2 Selanjutnya, gunakan nilai gradien dari hasil perhitungan di atas untuk mendapatkan persamana garis yang tegak lurus dengan gari 2x – y + 5 = 0. Diketahui persamaan garis yang akan dicari melalui titik 4, 2 maka persamaan garis yang akan dicari dapat diperoleh seperti cara di bawah. 3 Menentukan persamaan garis lurus yang saling tegak lurus dengan garis 2x – y + 5 = 0y – y1 = m2 x – x1 y – 2 = –1/2 x – 4 2 y – 2 = – x – 4 2y – 4 = –x + 4x + 2y – 4 – 4 = 0x + 2y – 8 = 0 Jadi, persamaan garis yang melalui titik 4, 2 dan tegak lurus dengan garis 2x – y + 5 = 0 adalah x + 2y – 8 = 0. Bandingkan hasilnya dengan cara cepat berikut. Cara cepatDiketahui bahwa persamaan garis yang akan dicari melalui titik 4, 2 maka x1 = 4 dan y1 = 2. Diperoleh persamaan garis x + 2y = 8 β†’ x + 2y – 8 = 0 hasil yang sama dengan cara step by step Jadi, persamaan garis yang melalui titik 4, 2 dan tegak lurus dengan garis 2x – y + 5 = 0 adalah x + 2y – 8 = D Baca Juga 4 Cara Menentukan Gradien Garis Lurus Contoh 2 – Persamaan Garis Saling Tegak Lurus Perhatikan gambar di bawah! Persamaan garis yang tegak lurus dengan garis g1 dan melalui titik 0, – 20 adalah ….A. 5x – 4y = 80B. 4x – 5y = 80C. 5x + 4y = 80D. 4x + 5y = 80 PembahasanLangkah pertama adalah mencari nilai gradien garis g1 Garis yang diberikan pada gambar condong ke kiri, sehingga gradiennya bernilai negatif. m1 = β€’Ξ”y/Ξ”xm1 = β€’20/25 = β€’4/5 Mencari gradien garis kedua, karena tegak lurus maka berlaku hasil kali perkalian gradiennya sama dengan – Γ— m2 = –1–4/5 Γ— m2 = –1m2 = –1 Γ— –5/4m2 = 5/4 Mencari persamaan garis lurus yang saling tegak lurus dengan garis g1 dan melalui titik 0, – 20y – y1 = m2 x – x1 y – -20 = 5/4 x – 0 y + 20 = 5/4 x4 y + 20 = 5x4y + 80 = 5x5x – 4y = 80 Jadi persamaan garis lurus yang saling tegak lurus dengan garis g1 dan melalui titik 0, – 20 adalah 5x – 4y = 80. Jawaban A Demikianlah tadi ulasan materi cara menentukan persamaan garis lurus yang saling tegak lurus. Meliputi juga cara cepat menemukan persamaan garis saling tegak lurus dan contoh soal beserta dengan pembahasannya. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Rumus pada Persamaan Garis Lurus

Penyelesaian Diketahui m = 3 dan (x 1, y 1) = (-2,-3). Sehingga, Jadi, persamaan garis lurusnya adalah y = 3x + 3. II. Jika diketahui dua titik yang dilalui garis. Misalnya, suatu garis melalui dua buah titik, yaitu (x 1, y 1) dan (x 2, y 2 ). Kamu bisa menggunakan rumus di bawah ini untuk mengetahui persamaan garisnya.

Jawaban Ayo Kita Berlatih Halaman 176 MTK Kelas 8 Persamaan Garis LurusAyo Kita Berlatih 176, 177A. Soal Pilihan Ganda PG dan B. Soal UraianBab 4 Persamaan Garis LurusMatematika MTKKelas 8 / VII SMP/MTSSemester 1 K13Jawaban Ayo Kita Berlatih Matematika Kelas 8 Halaman 176 Persamaan Garis LurusJawaban Ayo Kita Berlatih Matematika Halaman 176 Kelas 8 Persamaan Garis LurusJawaban Esai Ayo Kita Berlatih Halaman 176, 177 MTK Kelas 8 Persamaan Garis LurusBuku paket SMP halaman 176 ayo kita berlatih adalah materi tentang Persamaan Garis Lurus kelas 7 kurikulum 2013. Terdiri dari 8 ini adalah pembahasan dan Kunci Jawaban Matematika Kelas 8 Semester 1 Halaman 176, 177. Bab 4 Persamaan Garis Lurus Ayo Kita berlatih Hal 176, 177 Nomor 1 - 8 Essai. Kunci jawaban ini dibuat untuk membantu mengerjakan soal matematika bagi kelas 8 di semester 1 halaman 176, 177 . Semoga dengan adanya pembahasan serta kunci jawaban ini adik-adik kelas 8 dapat menyelesaikan tugas Persamaan Garis Lurus Kelas 8 Halaman 176, 177 yang diberikan oleh bapak ibu/guru. Kunci Jawaban MTK Kelas 8 Semester Jawaban Matematika Kelas 8 Halaman 176 Ayo Kita Berlatih semester 1 k13Persamaan Garis LurusAyo Kita Berlatih !5. Coba buktikan apakah persamaan garis lurus berikut saling tegak 2y=2x-3 dengan y=-x+3b. 3x+y=7 dengan 3y-6y=7c. 4x+6/3=4y dengan 3x+4y+2=0Jawaban a 2y = 2x – 3y = x -3/2y = mx + cm1 = 1y = –x + 3y = mx + cm2 = –1Karena m1 x m2 = 1 x -1 = -1, maka kedua garis Saling Tegak Lurusb 3x + y = 7y = -3x + 7y = mx + cm1 = -33x – 6y = 76y = 3x - 7y = 1/2x -7/6m2 = 1/2Karena m1 x m2 tidak sama dengan -1, maka kedua garis Tidak Saling Tegak Lurusc 4x + 6/3 = 4y12y = 4x + 6y = 1/3x + 1/2y = mx + cm1 = 1/33x + 4y + 2 = 0a = 3, b = 4, c = 2m2 = -a/b = -3/4Karena m1 x m2 tidak sama dengan -1, maka kedua garis Tidak Saling Tegak LurusJawaban Ayo Kita Berlatih Halaman 176 MTK Kelas 8 Persamaan Garis LurusPembahasan Ayo Kita Berlatih Matematika kelas 8 Bab 4 K13
b. kedua garis saling tegak lurus 3. a. kemiringan garis n adalah 2 b. kemiringan garis n adalah - 1 2. 4. a. sejajar b. sejajar c. d. -5. Coba buktikan apakah persamaan garis lurus berikut saling tegak lurus. a. 2y = 2x - 3, memiliki gradien m = 1 y = -x + 3, memiliki gradien m = -1, karena jika gradien kedua garis dikalikan = -1
Cara Menentukan Persamaan Garis Tegak Lurus dan Contoh Soal – Ketika di bangku sekolah menengah pertama SMP tentunya kita pernah diajarkan mengenai materi persamaan garis lurus. Apa yang dimaksud persamaan garis lurus? Persamaan garis lurus adalah persamaan yang terdiri dari satu variabel atau lebih. Persamaan garis sendiri dapat dibedakan menjadi dua kategori yaitu persamaan garis yang sejajar dan saling tegak lurus. Cara menentukan persamaan garis tegak lurus berbeda dengan persamaan garis sejajar. Hal ini dikarenakan kondisi garisnya saja sudah berbeda. Kita dapat menyelidiki persamaan garis saling tegak lurus dengan cara mengalikan nilai gradien yang ada pada kedua garis, dimana nilainya sama dengan -1. Dua garis yang saling berpotongan pada dasarnya akan membentuk sudut siku siku besarnya 90Β° dan memiliki titik potong. Bagaimana dua garis berpotongan pada sebuah bidang koordinat dapat tegak lurus? Pada kesempatan kali ini saya akan menjelaskan cara menentukan persamaan garis tegak lurus dan contoh soal persamaan garis saling tegak lurus. Pembahasan garis yang saling tegak lurus ini akan saya jelaskan secara rinci dan lengkap agar mudah untuk anda pahami. Untuk lebih jelasnya dapat anda simak artikel di bawah ini. Contents 1 Cara Menentukan Persamaan Garis Tegak Lurus dan Contoh Hubungan Gradien Pada Dua Garis Tegak Cara Menemukan Persamaan Garis Saling Tegak Lurus Dengan Contoh Soal Persamaan Garis Tegak Metode Metode Cepat Apakah anda sudah paham mengenai cara menentukan persamaan garis tegak lurus di atas? Persamaan garis tegak lurus ini dapat kita pelajari ketika di bangku sekolah. Dalam materi tersebut terdapat beberapa hal yang dibahas seperti cara menyelesaikan, rumus, hingga contoh soal di dalamnya. Seperti yang kita tahu bahwa dua garis berpotongan di titik tertentu tidak semuanya selalu tegak lurus. Hal ini dikarenakan kedua garis yang berpotongan tadi tidak selalu membentuk sudut siku siku atau sudut 90Β°. Dua garis dapat dikatakan tegak lurus apabila saling berpotongan di satu titik dan membentuk sudut siku siku. Untuk lebih jelasnya perhatikan gambar di bawah ini Perbedaan Garis Tegak Lurus dan Tidak Tegak Lurus Berdasarkan gambar di atas kita tahu bahwa dua garis yang saling berpotongan tidak selalu tegak lurus. Lain halnya jika saling berpotongan dan membentuk sudut siku siku, maka dikatakan sebagai tegak lurus. Di bawah ini terdapat pembahasan mengenai cara menentukan persamaan garis tegak lurus dan contoh soal persamaan garis saling tegak lurus yaitu sebagai berikut Hubungan Gradien Pada Dua Garis Tegak Lurus Dua garis saling tegak lurus memiliki karakteristik yaitu hasil perkalian dari gradiennya bernilai sama dengan -1. Dengan memperhatikan nilai gradien tersebut, kita dapat menemukan persamaan garis yang saling tegak lurus dengan garis lainnya. Dengan kata lain nilai gradien garis kedua akan berkebalikan dengan nilai gradien garis pertamanya atau dua garis yang saling tegak lurus memiliki hasil perkalian gradien yang sama dengan -1. Contohnya garis pertama memiliki nilai gradien mg1 dan garis kedua memiliki nilai gradien mg2. Maka kedua gradien ini dapat dikalikan dengan hasil sama dengan -1. Sifat Gradien Garis Tegak Lurus Cara menentukan persamaan garis saling tegak lurus apabila diketahui garis g2 melalui titik x1, y1 dan tegak lurus dengan garis g1 dapat dilakukan dengan menggunakan rumus seperti di bawah ini y – y1 = mg2 x – x1 Keteranganmg2 = Nilai gradien garis yang dicari persamaan garisnya atau nilai gradien kedua Cara menentukan persamaan garis tegak lurus pada umumnya dapat dilakukan dengan langkah langkah singkat seperti di bawah ini Langkah pertama menentukan nilai mg1 terlebih dahulu. Garis pertama memiliki gradien yang berkebalikan dengan gradien garis kedua sehingga memenuhi syarat mg1 x mg2 = -1. Kemudian menentukan gradien garis kedua terlebih dahulu nilai mg2. Perhatikan titik x1, y1 atau titik yang dilalui garis kedua. Nilai gradien mg2 disubstitusikan ke persamaan y – y1 = m x – x1. Lakukan proses operasi aljabar seperti biasa. Cara Menemukan Persamaan Garis Saling Tegak Lurus Dengan Cepat Persamaan garis yang mempunyai gradien m dan tegak lurus dengan garis lainnya dapat ditentukan dengan menggunakan cara cepat. Cara cepat ini dapat anda pelajari setelah memahami konsep menyeluruh bagaimana cara menentukan persamaan garis saling tegak lurus secara runut. Adapun caranya yaitu Kesimpulan Persamaan garis ax + by + c = 0 dan garis bx – ay = b Γ— x1 – a Γ— y1 akan sejajar. Persamaan garis ax – by + c = 0 dan garis bx + ay = b Γ— x1 – a Γ— y1 akan sejajar. Contoh Soal Persamaan Garis Tegak Lurus Setelah menjelaskan tentang cara menentukan persamaan garis tegak lurus di atas. Selanjutnya saya akan membagikan contoh soal terkait cara tersebut. Adapun contoh soal persamaan garis saling tegak lurus dan pembahasannya yaitu sebagai berikut Tentukan persamaan garis yang tegak lurus garis 3x – y + 6 = 0 dan melalui titik 5, 3? soal persamaan garis saling tegak lurus ini dapat ditentukan dengan dua cara yaitu metode biasa dan metode cepat. Berikut langkah langkahnya yaitu Metode Biasa Pertama menentukan gradien persamaan garis 3x – y + 6 = 0 terlebih dahulu. Maka3x – y + 6 = 0 y = 3x + 6 m1 = 3 Kemudian menentukan gradien garis kedua karena saling tegak lurusm1 Γ— m2 = β€’1 3 Γ— m2 = β€’1 m2 = β€’1/3 Selanjutnya mencari persamaan garis tegak lurus dengan garis 3x – y + 6 = 0 dan melalui titik 5, 3. Adapun caranya yaitu y – y1 = m2 x – x1 y – 3 = –1/3 x – 5 3 y – 3 = –x – 5 3y – 9 = –x + 5x + 3y – 9 – 5 = 0 x + 3y – 14 = 0Jadi persamaan garis yang tegak lurus garis 3x – y + 6 = 0 dan melalui titik 5, 3 adalah x + 3y – 14 = 0. Metode Cepat Cara menentukan persamaan garis tegak lurus selanjutnya menggunakan metode cepat seperti di bawah ini Dari langkah langkah di atas diperoleh persamaan garis x + 3y = 14 β†’ x + 3y – 14 = 0 hasilnya sama seperti metode biasa di atas. Sekian penjelasan mengenai cara menentukan persamaan garis tegak lurus dan contoh soal persamaan garis saling tegak lurus. Dua garis dapat dinyatakan tegak lurus apabila membentuk sudut siku siku dan berpotongan di satu titik. Semoga artikel ini dapat bermanfaat dan terima kasih telah berkunjung di blog ini.
1 Bentuk umum persamaan garis lurus adalah y = mx + c dengan m adalah gradien dan c adalah konstanta. 2. Gradien garis yang melalui dua titik adalah π‘š= 2βˆ’ 1 2βˆ’ 1 3. Persamaan garis lurus yang melalui sebuah titik dan memiliki gradien m adalah y - y 1 = m(x - x 1) 4. Persamaan garis lurus yang melalui dua titik adalah βˆ’ 1 2βˆ’ 1
H7Hz6.
  • 0q0ibte8xs.pages.dev/330
  • 0q0ibte8xs.pages.dev/172
  • 0q0ibte8xs.pages.dev/235
  • 0q0ibte8xs.pages.dev/356
  • 0q0ibte8xs.pages.dev/22
  • 0q0ibte8xs.pages.dev/139
  • 0q0ibte8xs.pages.dev/161
  • 0q0ibte8xs.pages.dev/98
  • 0q0ibte8xs.pages.dev/102
  • coba buktikan apakah persamaan garis lurus berikut saling tegak lurus